Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 916: 170240, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278252

RESUMO

Polyhydroxyalkanoate (PHA) is a fully biodegradable bioplastic. To foster a circular economy, the integration of PHA production into wastewater treatment facilities can be accomplished using mixed microbial consortia. The effectiveness of this approach relies greatly on the enrichment of PHA-accumulating microorganisms. Hence, our study focused on bioaugmenting Thauera mechernichensis TL1 into mixed microbial consortia with the aim of enriching PHA-accumulating microorganisms and enhancing PHA production. Three sequencing batch reactors-SBRctrl, SBR2.5%, and SBR25%-were operated under feast/famine conditions. SBR2.5% and SBR25% were bioaugmented with T. mechernichensis TL1 at 2.5%w/w of mixed liquor volatile suspended solids (MLVSS) and 25%w/w MLVSS, respectively, while SBRctrl was not bioaugmented. SBR2.5% and SBR25% achieved maximum PHA accumulation capacities of 56.3 %gPHA/g mixed liquor suspended solids (MLSS) and 50.2 %gPHA/gMLSS, respectively, which were higher than the 25.4 %gPHA/gMLSS achieved by SBRctrl. The results of quantitative polymerase chain reaction targeting the 16S rRNA gene specific to T. mechernichensis showed higher abundances of T. mechernichensis in SBR2.5% and SBR25% compared with SBRctrl in the 3rd, 17th, and 31st cycles. Fluorescence in situ hybridization, together with fluorescent staining of PHA with Nile blue A, confirmed PHA accumulation in Thauera spp. The study demonstrated that bioaugmentation of T. mechernichensis TL1 at 2.5%w/w MLVSS is an effective strategy to enhance PHA accumulation and facilitate the enrichment of PHA-accumulating microorganisms in mixed microbial consortia. The findings could contribute to the advancement of PHA production from wastewater, enabling the transformation of wastewater treatment plants into water and resource recovery facilities.


Assuntos
Reatores Biológicos , Poli-Hidroxialcanoatos , Thauera , Consórcios Microbianos , Hibridização in Situ Fluorescente , RNA Ribossômico 16S , Águas Residuárias
2.
Sci Total Environ ; 848: 157652, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35905960

RESUMO

Water commuting is a major urban transportation method in Thailand. However, urban boat commuters risk exposure to microbially contaminated bioaerosols or splash. We aimed to investigate the microbial community structures, identify bacterial and viral pathogens, and assess the abundance of antimicrobial resistance genes (ARGs) using next-generation sequencing (NGS) at 10 sampling sites along an 18 km transportation boat route in the Saen Saep Canal, which traverses cultural, commercial, and suburban land-based zones. The shotgun metagenomic (Illumina HiSeq) and 16S rRNA gene amplicon (V4 region) (Illumina MiSeq) sequencing platforms revealed diverse microbial clusters aligned with the zones, with explicit segregation between the cultural and suburban sites. The shotgun metagenomic sequencing further identified bacterial and viral pathogens, and ARGs. The predominant bacterial pathogens (>0.5 % relative abundance) were the Burkholderia cepacia complex, Arcobacter butzleri, Burkholderia vietnamiensis, Klebsiella pneumoniae, and the Enterobacter cloacae complex. The viruses (0.28 %-0.67 % abundance in all microbial sequences) comprised mainly vertebrate viruses and bacteriophages, with encephalomyocarditis virus (33.3 %-58.2 % abundance in viral sequences), hepatitis C virus genotype 1, human alphaherpesvirus 1, and human betaherpesvirus 6A among the human viral pathogens. The 15 ARG types contained 611 ARG subtypes, including those resistant to beta-lactam, which was the most diverse and abundant group (206 subtypes; 17.0 %-27.5 %), aminoglycoside (94 subtypes; 9.6 %-15.3 %), tetracycline (80 subtypes; 15.6 %-20.2 %), and macrolide (79 subtypes; 14.5 %-32.1 %). Interestingly, the abundance of ARGs associated with resistance to beta-lactam, trimethoprim, and sulphonamide, as well as A. butzleri and crAssphage, at the cultural sites was significantly different from the other sites (p < 0.05). We demonstrated the benefits of using NGS to deliver insights into microbial communities, and antimicrobial resistance, both of which pose a risk to human health. Using NGS may facilitate microbial risk mitigation and management for urban water commuters and proximal residents.


Assuntos
Antibacterianos , Bacteriófagos , Aminoglicosídeos , Antibacterianos/farmacologia , Bactérias , Bacteriófagos/genética , Farmacorresistência Bacteriana/genética , Humanos , Macrolídeos , Metagenômica , RNA Ribossômico 16S/genética , Sulfonamidas , Tetraciclina , Meios de Transporte , Trimetoprima , Água , beta-Lactamas
3.
Environ Pollut ; 291: 118205, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583268

RESUMO

Anaerobic membrane bioreactors (AnMBRs) have recently received a great amount of attention as an alternative anaerobic treatment process due to their superior capability for sludge retention with high effluent quality. Nevertheless, membrane fouling in AnMBRs has been a major concern. In this study, the surfaces of polyvinylidene fluoride (PVDF) ultrafiltration membranes were modified with tannic acid (TA) and Cu(II) at various molar ratios of TA to Cu(II), including 3:1, 2:1, 1:1, 1:2, and 1:3. The hydrophilicity, morphology, chemical structure, elemental composition, and antibacterial properties of the unmodified and modified membranes were analyzed using water contact angle measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), SEM-energy dispersive X-ray spectrometry (SEM-EDX), and the clear zone method, respectively. The modified membrane with a TA-to-Cu(II) molar ratio of 1:3 had high hydrophilicity with certain antibacterial properties; therefore, it was selected to be further tested in an AnMBR along with an unmodified membrane. The chemical oxygen demand (COD) removal efficiencies of the unmodified membrane and modified membrane were 92.2 ± 3.6% and 91.8 ± 4.0%, respectively. The modified membrane had higher permeability after backwashing with less chemical cleaning (CC) than the unmodified membrane. Surface modification with TA and Cu(II) appeared to reduce irreversible fouling on the membranes.


Assuntos
Cobre , Purificação da Água , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Espectroscopia de Infravermelho com Transformada de Fourier , Taninos , Eliminação de Resíduos Líquidos
4.
Arch Microbiol ; 203(5): 1981-1993, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33528590

RESUMO

Anthropogenically impacted urban canals represent distinct freshwater ecosystems that could shape microbial communities in underlying sediments; however, knowledge of the relationships between environmental factors and microbial community compositions and their functions in such an environment is limited. This study characterized the microbial community compositions of malodorous canal sediments at six locations along the Saen Saep Canal in Thailand. 16S rRNA gene amplicon sequencing (MiSeq, Illumina) revealed dominant genera classified as fermentative bacteria, methanogens, and sulfate-reducing bacteria (SRB), all of which emphasized anaerobic environments. SRB, as the primary producers of malodorous hydrogen sulfide, accounted for 8.2-30.4% of the total sequences. dsrB gene clone libraries further identified the SRB species. A constrained correspondence analysis demonstrated a spatial pattern of SRB that correlated with physicochemical parameters in which nitrate and sulfate in sediments were the most influencing factors. Overall, a better understanding of the SRB and other related microorganisms in canal sediments can assist in the future implementation of appropriate olfactory abatement and management methodologies in urban canals.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota , Sulfatos/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/química , Nitratos/análise , Nitratos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/análise , Tailândia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32657213

RESUMO

An understanding of microbial communities present in anaerobic bioreactors can strongly facilitate the development of approaches to control undesirable microorganisms, such as sulfate-reducing bacteria (SRB), in the system. In this study, overall microbial communities present in anaerobic bioreactors from seven industrial wastewater treatment plants (including food, pulp and paper industries) were investigated using 16S rRNA gene amplicon sequencing (MiSeq, Illumina). The dominant methanogens identified in the anaerobic bioreactors treating industrial wastewater were Methanobacterium and Methanosaeta; Methanospirillum was a predominant methanogen in the anaerobic sludge digester. Hydrogenotrophic and acetoclastic methanogens were detected at similar relative abundances in the anaerobic covered lagoons treating starch wastewater, whereas hydrogenotrophic methanogens were the predominant methanogens present in the sludge digester. SRB communities were further investigated using dsrB gene clone libraries. The results indicated the presence of SRB, such as uncultured Desulfobulbus sp., Syntrophobacter fumaroxidans, Syntrophorhabdus sp. PtaB.Bin027, and Desulfovibrio fructosivarans JJ. Incomplete-oxidizing SRB were the predominant SRB in all of the anaerobic bioreactors treating wastewater. In contrast, similar relative abundances of complete and incomplete-oxidizing SRB were observed in the sludge digester. The results of this study can further facilitate the development of SRB-controlling strategies to improve the efficiency of wastewater treatment.


Assuntos
Biocombustíveis/análise , Reatores Biológicos/microbiologia , Metagenoma/genética , Microbiota/genética , Purificação da Água/métodos , Anaerobiose , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Oxirredução , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Águas Residuárias/microbiologia
6.
Sci Rep ; 10(1): 3752, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111932

RESUMO

The accumulation of plastic waste in the environment has become a serious environmental problem worldwide. Biodegradable plastics, such as polyhydroxyalkanoate (PHA), could serve as green alternatives to petroleum-based plastics. In this study, a mixed microbial culture was enriched under feast/famine conditions using a sequencing batch reactor (SBR) with acetate as a carbon source. The enrichment could accumulate a maximum PHA concentration of 32.3% gPHA/g mixed liquor suspended solids (MLSS) in the 12th cycle of SBR operation. The microbial community in this sludge sample was analyzed using 16 S rRNA gene amplicon sequencing (MiSeq). The results showed the dominance of Proteobacteria, represented by Alphaproteobacteria (13.26% of total sequences), Betaproteobacteria (51.37% of total sequences), and Gammaproteobacteria (23.44% of total sequences). Thauera (Betaproteobacteria) had the highest relative abundance, accounting for 48.88% of the total sequences. PHA-accumulating microorganisms in the enrichment were detected using fluorescence in situ hybridization (FISH) and a fluorescent dye, Nile blue A. Alphaproteobacteria and Betaproteobacteria were capable of accumulating PHA, while no Gammaproteobacteria were detected. Thauera spp. from Betaproteobacteria constituted 80.3% of the total PHA accumulating cells.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos , Poli-Hidroxialcanoatos/metabolismo , Bactérias/classificação
7.
J Environ Sci (China) ; 42: 41-49, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27090693

RESUMO

Nitrite accumulation in shrimp ponds can pose serious adverse effects to shrimp production and the environment. This study aims to develop an effective process for the enrichment of ready-to-use nitrite-oxidizing bacteria (NOB) inocula that would be appropriate for nitrite removal in brackish shrimp ponds. To achieve this objective, the effects of nitrite concentrations on NOB communities and nitrite oxidation kinetics in a brackish environment were investigated. Moving-bed biofilm sequencing batch reactors and continuous moving-bed biofilm reactors were used for the enrichment of NOB at various nitrite concentrations, using sediment from brackish shrimp ponds as seed inoculum. The results from NOB population analysis with quantitative polymerase chain reaction (qPCR) show that only Nitrospira were detected in the sediment from the shrimp ponds. After the enrichment, both Nitrospira and Nitrobacter coexisted in the reactors controlling effluent nitrite at 0.1 and 0.5 mg-NO2(-)-N/L. On the other hand, in the reactors controlling effluent nitrite at 3, 20, and 100 mg-NO2(-)-N/L, Nitrobacter outcompeted Nitrospira in many orders of magnitude. The half saturation coefficients (Ks) for nitrite oxidation of the enrichments at low nitrite concentrations (0.1 and 0.5 mg-NO2(-)-N/L) were in the range of 0.71-0.98 mg-NO2(-)-N/L. In contrast, the K(s) values of NOB enriched at high nitrite concentrations (3, 20, and 100 mg-NO2(-)-N/L) were much higher (8.36-12.20 mg-NO2(-)-N/L). The results suggest that the selection of nitrite concentrations for the enrichment of NOB inocula can significantly influence NOB populations and kinetics, which could affect the effectiveness of their applications in brackish shrimp ponds.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitritos/metabolismo , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Biofilmes , Cinética , Nitrobacter , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...